Blog > Design > Article

L'IA et le machine learning au service du Product ?
Impossible de ne pas en avoir entendu parler, les IA envahissent la toile. Si la majorité des utilisateurs s’en servent pour générer des images d’animaux “cute” dans un “style Pixar”, d’autres cherchent à explorer le potentiel et les opportunités générées par ces outils.
Il est intéressant d’anticiper les impacts sur le secteur du product et de s’adapter au plus vite pour mettre à profit ces nouvelles technologies.
Qu’est-ce que l'IA et le machine learning ?
L'intelligence artificielle est un domaine de l'informatique qui vise à développer des machines capables de réaliser des tâches qui nécessitent normalement de l'intelligence humaine. Cela peut inclure des tâches comme la reconnaissance vocale, la vision par ordinateur, la prise de décision et la résolution de problèmes.
De son côté, le machine learning (apprentissage automatique) est une branche de l'IA qui se concentre sur l'utilisation d'algorithmes pour permettre aux machines d'apprendre à partir de données, sans être explicitement programmées pour chaque tâche. Le machine learning utilise des techniques statistiques pour permettre aux ordinateurs de reconnaître des modèles dans les données et de prendre des décisions en fonction de ces derniers.
L'IA et la machine learning sont donc des technologies de pointe qui permettent aux machines d'apprendre à partir de données et de prendre des décisions de manière autonome. Les entreprises peuvent les utiliser pour analyser des données sur les utilisateurs, telles que les habitudes d'achat, les commentaires ou les avis en ligne.
Grâce à l'analyse de ces données, les entreprises peuvent mieux comprendre les besoins des utilisateurs et améliorer leurs designs de produits.
Des technologies qui ne datent pas d’hier
Les premiers travaux sur l'IA ont été menés dans les années 1950, avec des pionniers tels que Alan Turing et John McCarthy qui ont posé les bases de la théorie de l'IA. Cependant, à cette époque, les ordinateurs n'étaient pas assez puissants pour permettre des avancées significatives dans le domaine.
Au cours des années 1960 à 1970, les chercheurs ont travaillé sur des algorithmes et des modèles pour aider les machines à comprendre le langage naturel, à jouer à des jeux de stratégie et à résoudre des problèmes mathématiques complexes. Cependant, ces approches n'ont pas encore permis de réaliser des tâches plus complexes.
Dans les années 1980 et 1990, des avancées dans la conception de puces et dans la théorie de l'apprentissage automatique ont permis aux chercheurs de progresser dans le développement de l'IA. Les techniques de machine learning ont commencé à être utilisées pour analyser de grandes quantités de données et pour résoudre des problèmes complexes dans des domaines tels que la reconnaissance vocale et l'analyse d'images.
Au début des années 2000, l'émergence d'Internet a permis de collecter et de partager des données à une échelle jamais vue auparavant, ce qui a conduit à une explosion de l'utilisation de l'IA et du machine learning dans les applications en ligne. Les algorithmes de recommandation, les chatbots et les assistants personnels tels que Siri et Alexa ont commencé à devenir courants.
Cette explosion de donnée collectable a permis ces dernières années des avancées significatives dans les domaines de l'apprentissage profond et du traitement du langage naturel.
Les réseaux de neurones profonds sont devenus plus efficaces dans la reconnaissance d'images et de sons, ainsi que dans la compréhension du langage naturel.
Aujourd'hui, l'IA et le machine learning sont largement utilisés dans des domaines tels que la santé, la finance, la vente au détail et la fabrication.
Les algorithmes de deep learning sont utilisés pour la reconnaissance faciale, la détection de fraudes et la prédiction de tendances du marché, entre autres. Cela explique le récent engouement et la démocratisation de ces technologies.
Les GAFAM en première ligne
Il n'existe pas à l’heure actuelle de consensus sur le nombre de catégories d'IA, certaines classifications regroupent les différentes techniques d'IA en seulement quelques catégories, tandis que d'autres classifications en comptent plusieurs dizaines.
Cependant, on peut identifier plusieurs catégories majeures avec en tête de liste, les réseaux de neurones profonds (Deep Learning) qui sont largement utilisés par des géants de la tech tels que Microsoft, Facebook et Google.
Ce dernier les utilise pour la reconnaissance d'images dans Google Photos, la traduction automatique dans Google Translate et l'analyse de sentiments dans Google News.
Microsoft les utilise pour la reconnaissance vocale dans Cortana et la reconnaissance d'images dans Bing.
Facebook les utilise entre autre pour la détection de visages dans les photos et la reconnaissance de langage dans Messenger.
On retrouve également le traitement du langage naturel (Natural Language Processing) qui nous est également familier puisque utilisé par des entreprises comme Amazon, IBM et Apple.
Amazon l'utilise pour les commandes vocales dans Amazon Echo, le service clientèle et la recommandation de produits.
IBM l'utilise pour l'analyse de données textuelles dans IBM Watson et Apple dan son assistant vocal.
Enfin plus “récemment”, l'apprentissage par renforcement (Reinforcement Learning) qui est utilisé par Tesla, OpenAI et DeepMind fait son apparition.
Tesla l'utilise notamment pour la conduite autonome de ses voitures. OpenAI et DeepMind l'utilisent pour les jeux et les simulations.
Quels impacts sur les métiers du product ?
Une récente étude publiée par l’université de Pennsylvanie examine l'impact potentiel des grands modèles de langage, en particulier les transformeurs de type GPT (Generative Pre-trained Transformers), sur le marché du travail. Les auteurs de l'étude ont analysé les emplois susceptibles d'être affectés par l'automatisation ou la substitution de tâches à l'aide de ces modèles de langage.
Extrait de l’étude “GPTs are GPTs: An early look at the labor market impact potential of large models”
Les résultats montrent que les GPT ont le potentiel de remplacer un grand nombre d'emplois dans des domaines tels que la traduction, la rédaction de contenu ou encore conception d’interface avec un taux d’exposition de 100%. Cependant, ils pourraient également créer de nouveaux emplois dans des domaines tels que la supervision et la maintenance de ces systèmes.
Si les auteurs de l'étude soulignent que ces résultats doivent être pris avec prudence, car l'impact réel sur le marché du travail dépendra de nombreux facteurs tels que les coûts de mise en œuvre, la qualité des résultats et la demande des consommateurs, il reste néanmoins inquiétant de voir l’impact que cela pourrait avoir sur les métiers du digital.
Du changement dans nos méthodes de travail
Les perspectives de développement dans le domaine du Product sont très prometteuses. Ces technologies offrent de nombreux avantages pour améliorer l'efficacité du processus de conception et de création de produits, toujours plus adaptés aux besoins des utilisateurs. Nous pouvons donc nous attendre à voir au cours des prochaines années de plus en plus d'entreprises adopter l'IA et le machine learning dans leur processus avec l’émergence de nouveaux outils et plateformes pour faciliter leur intégration.
L'IA va probablement entraîner des évolutions significatives dans les différents métiers liés au Product Management, Product Design et Développement. Voici quelques-unes des évolutions possibles :
- Compétences en IA : Les professionnels de ces métiers devront développer des compétences en IA pour tirer le meilleur parti des technologies émergentes. Les Product Managers, Product Designers et Développeurs devront comprendre les concepts clés de l'IA, tels que l'apprentissage automatique et le traitement du langage naturel, pour pouvoir collaborer efficacement avec les équipes techniques.
- Collaboration accrue : L'IA va encourager une collaboration plus étroite entre les équipes techniques et les professionnels du Product Management et du Product Design. Les Product Managers et les Product Designers devront travailler en étroite collaboration avec les développeurs pour définir les besoins en matière d'IA et pour s'assurer que les produits intègrent les fonctionnalités appropriées.
- Émergence de nouveaux rôles : L'IA pourrait également entraîner l'émergence de nouveaux rôles spécialisés, tels que le Prompt engineer, le Machine Learning Engineer ou le Natural Language Processing Expert. Ces professionnels seront chargés de développer des modèles d'IA personnalisés pour des tâches spécifiques, tels que la détection des fraudes ou l'analyse des sentiments.
En somme, l'IA va probablement entraîner des évolutions significatives dans les compétences, les rôles et les processus de travail des professionnels du Product Management/Owner, du Product Design et du Développement.
Les professionnels devront être prêts à s'adapter et à évoluer avec ces changements pour rester compétitifs sur le marché.
Des avantages considérables
Tout d'abord, ces technologies peuvent nous aider à identifier les tendances du marché et les besoins des clients, en analysant de grandes quantités de données et en fournissant des insights pertinents sur les besoins et les attentes des utilisateurs. De plus, celles-ci peuvent être utilisées pour améliorer la qualité et la rapidité de la prise de décision en fournissant des prévisions sur les résultats potentiels de différentes options, permettant ainsi aux PO, PM et PrD d’agir de façon éclairé. En outre, ces technologies peuvent être utilisées pour automatiser certaines tâches chronophages et répétitives, telles que la saisie de données ou la génération de rapports, libérant ainsi du temps pour se concentrer sur des tâches plus stratégiques et créatives.
Enfin, l'IA et le machine learning peuvent aider à optimiser les processus de développement de produits, en fournissant des analyses approfondies sur les performances des produits et en identifiant les zones à améliorer. Cela peut aider les PO, PM et PrD à élaborer des stratégies de développement plus efficaces et à atteindre leurs objectifs plus rapidement.
Voici quelques exemples concrets d'application de l'IA et du machine learning dans les métiers de Product Owner (PO), Product Manager (PM) et Product Designer (PrD) :
- Analyse des données clients : les modèles de machine learning peuvent être utilisés pour analyser de grandes quantités de données clients et fournir des insights pertinents sur leurs préférences, leurs habitudes d'utilisation et leurs besoins. Les PO, PM et PrD peuvent utiliser ces informations pour ajuster les fonctionnalités des produits et améliorer l'expérience utilisateur.
- Prévisions de vente : les modèles de machine learning peuvent également être utilisés pour prévoir les ventes de produits et aider les PO et PM à prendre des décisions éclairées en matière de gestion de l'inventaire, de la production et de la logistique.
- Personnalisation des produits : l'IA peut aider les PO, PM et PrD à personnaliser les produits en fonction des préférences individuelles des clients. Les modèles de machine learning peuvent analyser les données des clients et fournir des recommandations personnalisées pour les produits et les fonctionnalités à inclure.
- Développement de produits : l'IA et le machine learning peuvent aider les PO, PM et PrD à optimiser les processus de développement de produits en fournissant des analyses approfondies sur les performances des produits. Les modèles de machine learning peuvent également aider à identifier les bogues et les erreurs dans les produits, ce qui permet aux équipes de développement de résoudre rapidement les problèmes et d'améliorer la qualité du produit.
- Automatisation des tâches : l'IA et le machine learning peuvent être utilisés pour automatiser certaines tâches répétitives, telles que la saisie de données ou la génération de rapports. Cela permet aux PO, PM et PrD de se concentrer sur des tâches plus stratégiques et créatives.
Voici un exemple concret avec une feature table générée par une IA, permettant d’alimenter rapidement un benchmark concurrentiel :
Fonctionnalités | Nike Run Club | Freeletics | Strava |
---|---|---|---|
Suivi d'activité | Oui | Oui | Oui |
Comptage de pas | Non | Non | Non |
Suivi des calories brûlées | Oui | Oui | Oui |
Entraînements personnalisés | Oui | Oui | Non |
Suivi de l'alimentation | Non | Oui | Non |
Suivi de l'hydratation | Non | Oui | Non |
Suivi de la qualité du sommeil | Non | Non | Non |
Fonctionnalités de coaching | Oui | Oui | Oui |
Fonctionnalités de communauté | Oui | Oui | Oui |
Accès à des professionnels de la santé | Non | Oui | Non |
Des questionnements éthiques
L'essor de l'intelligence artificielle peut cependant soulever des questionnements éthiques complexes, notamment en ce qui concerne la vie privée et la confidentialité des données, qui est l’une des préoccupations majeures. Les systèmes d'IA pouvant nécessiter l'accès à des données sensibles telles que des informations médicales ou financières.
Pour protéger ses données contre les risques de violation de la vie privée et de sécurité, des mesures telles que le cryptage avancé et les politiques strictes de protection des données doivent être mises en place.
D’autres risques concernent la surveillance, la discrimination, la prise de décision autonome, et la responsabilité. Par exemple, les systèmes d'IA basés sur des données d'entraînement biaisées peuvent renforcer les discriminations existantes dans la société. De plus, les décisions prises par les systèmes d'IA autonomes peuvent avoir des conséquences importantes sur la vie humaine, ce qui soulève des questions sur la responsabilité et la transparence dans leur développement et leur utilisation.
Pour faire face à ces questions, il est important de s'assurer que les systèmes d'IA sont développés et utilisés de manière responsable et éthique, en prenant en compte les droits et les valeurs humaines fondamentales.
Les entreprises et les gouvernements doivent travailler à élaborer des cadres pour l'utilisation de l'IA, ainsi qu'à éduquer les utilisateurs et les développeurs sur les enjeux liés à cette technologie pour minimiser les risques et les impacts négatifs potentiels sur la société.
Comment se former ?
L'intelligence artificielle étant en constante évolution, celle-ci suscite un intérêt croissant. Que ce soit pour améliorer ses compétences professionnelles ou simplement pour satisfaire sa curiosité, de nombreuses personnes souhaitent se former à son utilisation.
Heureusement, il existe de nombreuses ressources en ligne et hors ligne pour aider les apprenants à acquérir ces connaissances.
Parmi les options disponibles, les formations en ligne sont particulièrement sollicitées.
Des sites comme Coursera, Udacity, edX et OpenClassrooms proposent des cours en ligne gratuits ou payants, avec des vidéos, des exercices pratiques et des projets à réaliser.
Les livres et les manuels sur l'IA sont également une excellente ressource pour les apprenants. Les ouvrages les plus connus comprennent "Deep Learning" de Ian Goodfellow, "Python Machine Learning" de Sebastian Raschka et "Artificial Intelligence: A Modern Approach" de Stuart Russell et Peter Norvig.
Les MOOCs (Massive Open Online Courses) sont une autre option toute aussi viable. Souvent proposés gratuitement ou à un coût abordable, ils permettent de suivre un cours en ligne avec des milliers d'autres étudiants.
Les bootcamps sont également populaires, offrant des formations intensives en IA proposées par des écoles ou des start-ups spécialisées dans le domaine.
En plus des options mentionnées précédemment, il est également possible de participer à des conférences et des ateliers. Les événements tels que les conférences de l'ACM (Association for Computing Machinery) et le NeurIPS (Conference on Neural Information Processing Systems) offrent des opportunités de réseautage et de formation tout en permettant d'assister à des présentations de pointe sur l'IA.
Enfin, les communautés en ligne peuvent également vous aider à vous former. Les forums de Reddit et les groupes de discussion sur LinkedIn sont des exemples de communautés en ligne dédiées. Ils permettent de poser des questions, d'échanger avec d'autres passionnés et de trouver des ressources pour progresser.
Do you want to talk product with us ?
You want to ask us a question about a topic or simply propose one ? Don't hesitate !